英文:
How to configure DL4j for local images
问题
我正在尝试使用DeepLearning4j将32x32像素的图像分类为0-9之间的数字。
我查阅了许多示例和教程,但在将数据集适配到网络时总是遇到一些异常情况。
我目前正在尝试使用一个带有ParentPathLabelGenerator的ImageRecordReader和RecordReaderDataSetIterator。
图像似乎加载得很好,但在适配时我总是遇到DL4JInvalidInputException异常。
File parentDir = new File(dataPath);
FileSplit filesInDir = new FileSplit(parentDir, NativeImageLoader.ALLOWED_FORMATS);
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();
BalancedPathFilter pathFilter = new BalancedPathFilter(new Random(), labelMaker, 100);
InputSplit[] filesInDirSplit = filesInDir.sample(pathFilter, 80, 20);
InputSplit trainData = filesInDirSplit[0];
InputSplit testData = filesInDirSplit[1];
ImageRecordReader recordReader = new ImageRecordReader(numRows, numColumns, 3, labelMaker);
recordReader.initialize(trainData);
DataSetIterator dataIter = new RecordReaderDataSetIterator(recordReader, 1, 1, outputNum);
当使用DenseLayer时:
Exception in thread "main" org.deeplearning4j.exception.DL4JInvalidInputException: 非矩阵输入;预期矩阵(秩为2),但得到秩为4的数组,形状为[1, 3, 32, 32]。缺少预处理器或错误的输入类型?(图层名称:layer0,图层索引:0,图层类型:DenseLayer)
当使用ConvolutionLayer时,错误出现在OutputLayer:
Exception in thread "main" org.deeplearning4j.exception.DL4JInvalidInputException: 非矩阵输入;预期矩阵(秩为2),但得到秩为4的数组,形状为[1, 1000, 28, 28]。缺少预处理器或错误的输入类型?(图层名称:layer1,图层索引:1,图层类型:OutputLayer)
是我加载图像的尝试有问题,还是我的网络配置有误?
配置:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.list()
.layer(0, new ConvolutionLayer.Builder()
.nIn(3) // 输入数据点数。
.nOut(1000) // 输出数据点数。
.activation(Activation.RELU) // 激活函数。
.weightInit(WeightInit.XAVIER) // 权重初始化。
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nIn(1000)
.nOut(outputNum)
.activation(Activation.SOFTMAX)
.weightInit(WeightInit.XAVIER)
.build())
.build();
<details>
<summary>英文:</summary>
I'm trying to use DeepLearning4j to categorize 32x32 images in numbers from 0-9.
I've looked up a number of examples and tutorials, but always run into some exception when fitting the dataset to a network.
Im currently trying to use a ImageRecordReader with ParentPathLabelGenerator and RecordReaderDataSetIterator.
The images seem to load fine but i always run into a DL4JInvalidInputException when fitting.
File parentDir = new File(dataPath);
FileSplit filesInDir = new FileSplit(parentDir, NativeImageLoader.ALLOWED_FORMATS);
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator();
BalancedPathFilter pathFilter = new BalancedPathFilter(new Random(), labelMaker, 100);
InputSplit[] filesInDirSplit = filesInDir.sample(pathFilter, 80, 20);
InputSplit trainData = filesInDirSplit[0];
InputSplit testData = filesInDirSplit[1];
ImageRecordReader recordReader = new ImageRecordReader(numRows, numColumns, 3, labelMaker);
recordReader.initialize(trainData);
DataSetIterator dataIter = new RecordReaderDataSetIterator(recordReader, 1, 1, outputNum);
When using DenseLayer:
Exception in thread "main" org.deeplearning4j.exception.DL4JInvalidInputException: Input that is not a matrix; expected matrix (rank 2), got rank 4 array with shape [1, 3, 32, 32]. Missing preprocessor or wrong input type? (layer name: layer0, layer index: 0, layer type: DenseLayer)
When using ConvolutionLayer the error occures at the OutputLayer:
Exception in thread "main" org.deeplearning4j.exception.DL4JInvalidInputException: Input that is not a matrix; expected matrix (rank 2), got rank 4 array with shape [1, 1000, 28, 28]. Missing preprocessor or wrong input type? (layer name: layer1, layer index: 1, layer type: OutputLayer)
Is my attempt at loading the images incorrect or is my network misconfigured?
Configuration:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.list()
.layer(0, new ConvolutionLayer.Builder()
.nIn(3) // Number of input datapoints.
.nOut(1000) // Number of output datapoints.
.activation(Activation.RELU) // Activation function.
.weightInit(WeightInit.XAVIER) // Weight initialization.
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nIn(1000)
.nOut(outputNum)
.activation(Activation.SOFTMAX)
.weightInit(WeightInit.XAVIER)
.build())
.build();
</details>
# 答案1
**得分**: 0
使用`.setInputType`配置选项来定义网络是最简单的方法。它将为您设置所有必要的预处理器,并且还会计算所有正确的`.nIn`值。
再次查看这个示例:https://github.com/eclipse/deeplearning4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/convolution/mnist/MnistClassifier.java#L156
当您使用`.setInputType`的方式来设置网络时,您无需设置任何`.nIn`值 - 但您仍然可以在我链接的示例中看到这一点,但通常没有充分的理由这样做。
<details>
<summary>英文:</summary>
The easiest way is to use the `.setInputType` configuration option when defining the network. It will set up all the necessary pre-processors for you, and it will calculate all the correct `.nIn` values too.
Take another look at this example https://github.com/eclipse/deeplearning4j-examples/blob/master/dl4j-examples/src/main/java/org/deeplearning4j/examples/convolution/mnist/MnistClassifier.java#L156
When you use the `.setInputType` way of setting up your network, you don't have to set any `.nIn` values at all - you still can, as is evident in the example I've linked, but usually there is no good reason to do so.
</details>
专注分享java语言的经验与见解,让所有开发者获益!
评论